California Housing Prices README ============================== This projects predicts median house values in Californian districts. The median house prices are derived from the 1990 census. See report and documentation [here](https://caheredia.github.io/california_housing_prices/build/html/index.html) Data Publishers ------------ - http://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html Project Organization ------------ ├── LICENSE ├── Makefile <- Makefile with commands like `make data` or `make train` ├── README.md <- The top-level README for developers using this project. ├── data │   ├── external <- Data from third party sources. │   ├── interim <- Intermediate data that has been transformed. │   ├── processed <- The final, canonical data sets for modeling. │   └── raw <- The original, immutable data dump. │ ├── docs <- A default Sphinx project; see sphinx-doc.org for details │ ├── models <- Trained and serialized models, model predictions, or model summaries │ ├── .ipynb <- Jupyter notebooks. │ │ ├── references <- Data dictionaries, manuals, and all other explanatory materials. │ ├── reports <- Generated analysis as HTML, PDF, LaTeX, etc. │   └── figures <- Generated graphics and figures to be used in reporting │ ├── requirements.yml <- The requirements file for reproducing the analysis environment │ │ ├── src <- Source code for use in this project.    ├── __init__.py <- Makes src a Python module │    ├── data <- Scripts to download or generate data    │   └── make_dataset.py │    ├── features <- Scripts to turn raw data into features for modeling    │   └── build_features.py │    ├── models <- Scripts to train models and then use trained models to make │ │ predictions    │   ├── predict_model.py    │   ├── train_model.py │ ├── cost_estimator.py │    └── visualization <- Scripts to create exploratory and results oriented visualizations    └── visualize.py --------